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Die ganzen Zahlen hat der liebe Gott gemacht, alles

andere ist Menschenwerk.

Leopold Kronecker (1823 - 1891)

Number Problems

Solving Equations

Solving an equation means finding the solution set, that is, the

set of numbers for which an equation holds.

One variable Two variables

Linear 5x = 55 20x + 23y = 2023

Quadratic x2 + y2 = 100

Quintic x5 + 2x3 − 8x = 3x4 − 4x2 − 4

These equations are all examples of polynomials, that is, sums

of products of constants and powers. The coefficients of a poly-

nomial are the numbers multiplying the powers. For example, the

coefficients of x5 + 2x3− 8x are (5, 0, 2, 0,−8, 0). The zeroes arise

because there are no even powers in this polynomial.

Number Operations

Mathematically, numbers are not defined in terms of what they

are but what we can do with them.

For a set of numbers F, called a field, we have operations of

addition, +, and multiplication ×, which satisfy the following:
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Addition

Associative (a + b) + c = a + (b + c)

Identity 0 a + 0 = 0 + a = a

Inverse −a a + (−a) = (−a) + a = 0

Commutative a + b = b + a

Multiplication

Associative (a× b)× c = a× (b× c)
Identity 1 a× 1 = 1× a = a

Inverse a−1 a× a−1 = a−1 × a = 1

(unless a = 0)

Commutative a× b = b× a
(except quaternions, a skew field)

Distributive

(a + b)× (c + d) = (a× c) + (a× d) + (b× c) + (b× d)

In the history of mathematics, these rules were observed, and

then proved for integers (except multiplicative inverse), then ra-

tional numbers, then real numbers.

Sometimes when no ambiguity arises, we omit the × sign for

a product, so that ab is short-hand for a× b.
The field axioms do not require us to define powers ab for

elements of a field. We can define integer powers ab for a ∈ F and

the exponent b ∈ Z (where Z is the set of all integers, positive and

negative). For example a−3 is short-hand for a−1 × a−1 × a−1.
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Consequences of Field Axioms

Modern mathematicians start with the axioms and see what they

can prove for a general set with operations satisfying the field

axioms. Most of what we know about numbers follow from the

field axioms and therefore apply to any field.

For example consider the statements:

(i) If a = 0 than a× b = 0 for any b.

(ii) If a× b = 0 then either a = 0 or b = 0 (or both).

Exercise: Statements (i) and (ii) hold for the rational num-

bers, and for the real numbers. Prove these statements for a gen-

eral field.

Solution: Take statement (i) first. We have

0× b = (0 + 0)× b = (0× b) + (0× b)

Adding −(0× b) to each side gives the conclusion.

Now take statement (ii). Suppose a× b = 0 but b 6= 0. Then

b−1 exists and

a = a× 1 = a× (b× b−1) = (a× b)× b−1 = 0× b−1 = 0

Likewise, the difference of two squares formula applies for

any field, by the distributive law and then the commutative law

for multiplication:

(x− y)(x + y) = x2 + xy − yx− y2 = x2 − y2
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Classes of Numbers

We will consider six important classes of numbers:

Positive integers Z+

Integers Z
Rational numbers Q
Real numbers R
Complex numbers C
Quaternions H

Inclusion relationships:

Z+ ⊂ Z ⊂ Q ⊂ R ⊂ C ⊂ H

The way we solve equations equations depends on the set of

numbers x and y which we consider eligible. For example, we

might want solutions in integers, or in real numbers, or rational

numbers.

Of these number sets, Z+ and Z are not fields, because the

inverse x−1 of an integer x ≥ 2 is not an integer. The sets Q,

R, C are all fields. The quaternions form a skew field because

multiplication does not commute. Plenty of theorems that apply

to all fields do not apply to the quaternions.

Equations to Solve

Solving an equation is a combination of the equation and the con-

straints on allowable numbers. We arrange the equations and

number sets into a table:
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Z+ Z Q R C H
20x + 23y = 2023

x2 + y2 = 100

x5 + 2x3 − 8x = 3x4 − 4x2 − 4

Integers

The integers are the whole numbers {. . .−2,−1, 0, 1, 2 . . .}. This

set is usually denoted by Z. If x is an integer, we write x ∈ Z,

that is, x is an element of the set Z.

The natural numbers usually means the positive integers, but

sometimes includes zero, with the notation N used in either case.

The notation in this table avoids ambiguity:

Set Name Notation

. . .− 2,−1, 0, 1, 2, . . . Integers Z
1, 2, 3, . . . Positive Integers N\{0}, Z+, Z>0
0, 1, 2, 3, . . . Non-negative Integers N ∪ {0}, Z+

0 , Z≥0
. . .− 3,−2,−, 1 Negative Integers Z−, Z<0
. . .− 3,−2,−1, 0 Non-positive Integers Z−0 , Z≤0

Here, {0} means the set containing zero. We use the following

set notation for operations on sets A and B:
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Name Notation Meaning

Empty set ∅
Union A ∪B Elements of A or B or both

Intersection A ∩B Elements of A and B

Difference A\B Elements of A not in B

The integers are closed under addition, subtraction and multi-

plication but not under division.

Primes and Factors

If c = a× b for positive integers a, b then we say that a and b are

factors of c. If a is a factor of c we say that a divides c, which

we can write a | c.
We can classify positive integers according to how many factors

they have.

Class Number of factors Examples

Unit One factor: itself 1

Primes Two factors: 1 and itself 2, 3, 5, 7, 11

Composite Three or more 4, 6, 8, 9, 10

We can only define primes because the set Z of integers is not

a field. If it were a field, then every element (except zero) divides

every other.

It should be obvious that any integer x ≥ 2 is a product of

primes. Just divide it into smaller and smaller bits (how do you

know the process has to stop?).
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It is not obvious that we get the same list of primes regardless

of the order in which we break the original number down into fac-

tors. Uniqueness of integer prime factorisation is the fundamental

theorem of arithmetic.

Relative Primality

For two positive integers a and b, the greatest common divi-

sor is the largest positive integer than divides them both, written

gcd(a, b).

If we write a and b as a product of prime powers, then the

greatest common divisor is a product of primes with each exponent

taken to be the smaller of the respective exponents in a and b.

For example:

60 = 22 × 31 × 51

100 = 22 × 30 × 52

20 = gcd(60, 100) = 22 × 30 × 51

If the greatest common divisor of positive integers a and b is

1, then we say a and b are relatively prime. That is equivalent to

a and b having no common prime factors.

Euclid’s Lemma If an integer n divides the product ab of

two integers, and n is relatively prime to a, then n divides b.

Euclid was a Greek mathematician who lived in the third century

BC.

Remark: Euclid’s lemma is obvious if we can assume unique-

ness of factorisation into primes. However, most proofs of prime
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factorisation uniqueness use Euclid’s lemma so, to avoid circular

logic, we have to seek other proofs of Euclid’s lemma, for example

using the Euclidean gcd algorithm (proof not provided here).

Linear Equation in Integers

Equations to be solved in integers are called Diophantine equa-

tions, after Diophantus of Alexandria who lived in the third cen-

tury AD.

An example of a Diophantine equation is 20x + 23y = 2023,

to be solved in positive integers.

A brute force solution means reducing a problem to finitely

many cases and then checking them all.

To solve the Diophantine equation 20x+23y = 2023 in positive

integers, make x the subject of the equation:

x =
2023− 23y

20

This can give positive x and y (in real numbers) only if 0 <

y < 2023
23 = 8722

23. We can check 87 values of y and see when the

corresponding x turns out to be an integer.

Exercise: Why is it more efficient to express x as a function

of y and not the other way around?
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This gives the solutions:

x y 20x + 23y

100 1 2023

77 21 2023

54 41 2023

31 61 2023

8 81 2023

The need for brute force can sometimes be reduced by some

clever maths. For example, we might spot the obvious solution

x = 100, y = 1 and then subtract that from the original equation:
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20x + 23y = 2023

20× 100 + 23× 1 = 2023

23(y − 1) = 20(100− x)

Using Euclid’s lemma, we can conclude that 20 divides y − 1

and 23 divides 100− x, and that the two quotients are equal. Let

us call their common integer value k. It follows that the general

solution is:

x = 100− 23k

y = 1 + 20k

If we want x and y to be positive integers then we choose

0 ≤ k ≤ 4. If x and y can be any integer, then the solutions

follow the same formula for any k ∈ Z.

Quadratic Equation in Integers

Likewise, to solve x2 + y2 = 100 in positive integers x, y, simply

test all integers from x = 1 to x = 9 (inclusive) and check the

cases where 100 − x2 is a square number. There are only two

where (x, y) = (6, 8) or (8, 6).

For solutions in integers we have to add (0, 10) and various

other derived points by permuting the co-ordinates or changing

sign.

These points are shown in the figure below:
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Quintic Equation in Integers

Suppose we want to solve x5+2x3−8x = 3x4−4x2−4 in integers.

For large negative x, the left hand side is large and negative

while the right hand side is large and positive. Therefore, there

cannot be solutions for large negative x.

For large positive x the term in x5 grows factor than 3x4 and

all other terms are small in comparison, which implies that there

are no solutions for large positive x.

With some work we can make this argument rigorous to exclude

roots outside the range [−2, 2] but we have not done that here.
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Status So Far

We have now mostly solved three equations for positive and neg-

ative integers, as shown by checks in the table below.

Z+ Z Q R C H
20x + 23y = 2023 3 3

x2 + y2 = 100 3 3

x5 + 2x3 − 8x = 3x4 − 4x2 − 4 ? ?
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Real Numbers

Mathematicians use real numbers to describe continuous vari-

ables, that might correspond, for example, to the length of a line

or the mass of an object.

Decimal Expansions

Real numbers include zero, positive and negative integers, rational

numbers and irrational numbers such as
√

2 or π. Real numbers

can be expanded in decimals. The decimal expansion of a rational

number either terminates or repeats in a cycle. Decimal expan-

sions for irrational numbers do not repeat.

Real number Decimal Expansion
1
8 0.125
1
14 0.0714285√

2 1.414213562373095048801688724209 . . .

π 3.141592653589793238462643383279 . . .

Intermediate Value Theorem

A function f : R → R is continuous if whenever we have a

sequence x1, x2, . . . → x∞ then f (x1), f (x2), . . . → f (x∞). All

polynomials, for example, are continuous functions but there are

other continuous functions which are not polynomials.

The intermediate value theorem, (sometimes called Bolzano’s

theorem) is an important result regarding the values taken by a
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continuous function.

Intermediate Value Theorem: Let f (x) be a continuous

real-valued function that takes values of opposite signs within a

real interval of values of x. Then there is some x within that

interval for which f (x) = 0.

The intermediate value theorem might seem obvious by a phys-

ical analogy. We can draw the graph of a continuous function with-

out lifting the pencil from the paper, so if the pencil crosses the

horizontal axis then it must be on the axis at some time. Proofs by

physical analogy do not satisfy mathematicians who require more

formal proofs (starting from a formal definition of a continuous

function, not included here).

Linear and Quadratic Equations

Finding real solutions to linear and quadratic equations is straight-

forward by making one variable the subject of the equation. We

have seen how 20x + 23y = 2023 can be written in that form.

Similarly, for the circle x2 + y2 = 100 we can write (for |x| ≤
10):

y =
√

100− x2, y =
√

100 = x2

which together yield all the real points.

Quintic Example

Suppose we want real solutions to x5 + 2x3− 8x = 3x4− 4x2− 4.

Subtracting the right-hand-side from the left hand side, we need
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A(x) = 0 where:

A(x) = x5 − 3x4 + 2x3 + 4x2 − 8x + 4

We can calculate values of A(x) as follows:

x x5 + 2x3 − 8x 3x4 − 4x2 − 4 A(x)

-1.5 -2.34375 2.1875 -4.53125

-1.3 2.29307 -2.1917 4.48477

-1 5 -5 10

0 0 -4 4

1 -5 -5 0

1.3 -2.29307 -2.1917 -0.10137

1.5 2.34375 2.1875 0.15625

We already knew about the root at x = 1. The intermediate

value theorem tells us there are (at least) two more real roots x

such that A(x) = 0, one with −1.5 < x < −1.3 and one with

1.3 < x < 1.5. Direct substitution reveals that those two roots

are ±
√

2.

Bounds on Root Count for Polynomials

Suppose we have a polynomial p(x) of degree d ≥ 1 (that is, the

highest power of x is xd), over some field F (ie coefficients of p lie

in F) and suppose that p(x) has a root λ ∈ F with p(λ) = 0.

Then it can be shown that p(x) factorises as (x−λ)q(x) where

q(x) is also a polynomial of degree d− 1. There is a long division

algorithm for polynomials that proves this.
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It follows that a polynomial of degree d can have at most d

real roots. In particular for our quintic polynomial, there can be

at most 5 real roots, although we have found only 3 so far.

Status So Far

We have now solved three equations for positive and negative inte-

gers, and for real numbers as shown by checks in the table below.

Z+ Z Q R C H
20x + 23y = 2023 3 3 3

x2 + y2 = 100 3 3 3

x5 + 2x3 − 8x = 3x4 − 4x2 − 4 ? ? ?

The question mark is because we have found three real roots

but we have not proved there are no more.

Rational Numbers

A rational number is the ratio of two integers, for example 1/2 or

−5/3. We denote the set of rational numbers by Q.

Farey Sequences

The Farey sequence of order n is the sequence of completely re-

duced fractions, between 0 and 1, which when in lowest terms

have denominators less than or equal to n, arranged in order of

increasing size.
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For example, the Farey sequence of order 6 is:

F6 =

{
0

1
,

1

6
,

1

5
,

1

4
,

1

3
,

2

5
,

1

2
,

3

5
,

2

3
,

3

4
,

4

5
,

5

6
,

1

1

}
There is a clever algorithm to calculate the kth term in the

Farey sequence of order n. The zeroth and first terms are:

a0
b0

=
0

1
;
a1
b1
− 1

n

The following recurrence formula produces the (k + 1)th term

from the (k − 1)th term and the kth term:

ak+1 =

⌊
n + bk−1

bk

⌋
ak − ak−1

bk+1 =

⌊
n + bk−1

bk

⌋
bk − bk−1

Here bxc denotes the greatest integer not exceeding x.

Exercise (easy): Show that |Fn| ≤ 2 + n(n−1)
2 .

Exercise (hard): Prove the recurrence formula works.

The chart shows
√
|Fn| as a function of n:
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Fun Fact: Let |Fn| be the number of terms in the Farey

sequence of order n. Then for large n:

lim
n↑∞

√
|Fn|
n

=

√
3

π

Irrational Numbers

A real number that is not rational is an irrational number. The

set of irrational numbers is R\Q, that is, the elements of R which

are not elements of Q.
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Exercise: Is the set of irrational numbers closed under addi-

tion? Under multiplication? Can you construct a proof or counter-

example?

The Rational Root Theorem

Suppose that p(x) is a polynomial of order d ≥ 1 with integer

coefficients, so that:

A(x) = adx
d + ad−1x

d−1 + . . . + a2x
2 + a1x + a0

Suppose that x = p
q is a rational root of A, with the fraction

in its lowest terms. Then the rational root theorem states that:

• p is an integer factor of the constant term a0, and

• q is an integer factor of the leading coefficient ad.

A number x is a root of the polynomial if A(x) = 0.

For example, to find rational solutions of x5 + 2x3 − 8x =

3x4 − 4x2 − 4, let us define

A(x) = 4− 8x + 4x2 + 2x3 − 3x4 + x5

Then the numerator p must be a factor of 4, so that p could

be -4, -2, -1, 1, 2 or 4. The denominator must be a factor of 1,

that is -1 or +1. This the only possible roots are -4, -2, -1, 1, 2

and 4. Checking all the cases, we find that the only rational root

is x = 1.
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This implies that the other real roots, namely ±
√

2, are irra-

tional.

To prove the rational root theorem, substitute x = p
q into the

polynomial and multiply by qd. This gives:

adp
d + ad−1p

d−1q + . . . + a2p
2qd−2 + a1pq

d−1 + a0q
d = 0

All the terms except the last are multiples of p, and therefore

p must also divide a0q
d. As p and q are relatively prime, Euclid’s

lemma implies that p | a0. Likewise, all terms except the first are

multiples of q, implying that the first term is also a multiple of q

so that q | ad.

Rational Points on a Circle

We know the integer points on the circle x2 + y2 = 100, namely

(0, 10), (6, 8) and other solutions by permutation or sign changes.

We also know all the real points, namely {(x,±
√

100− x2) :

|x| ≤ 10}.
But what about rational points? Is there a rational root theo-

rem in two dimensions that allows us to enumerate all the rational

points? No: there are infinitely many rational points.

To find them, draw a straight line through the point (−10, 0)

and through one other rational point. Let the gradient of that

straight line by g, so its equation is:

y = g(x + 10)
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Of course, g is rational as the straight line connects two rational

points. Squaring each side and substituting y2 = 100− x2 gives:

100− x2 = g2(x + 10)2 = g2x2 + 20g2x + 100g2

Moving all terms to the right hand side gives:

0 = (1+g2)x2+20g2x+100(g2−1) = (x+10)((1+g2)x+10(g2−1))

The right hand side has two roots; the point we already know at

(−10, 0) and a second where:

x = 10
1− g2

1 + g2

Substituting back into the straight line gives:

y = 10
2g

1 + g2

We can now see that not only does every rational point on the

circle, except (−10, 0) implies rational g, but also that any rational

g generates a rational point on the circle. Integer points on the

curve correspond to

t = 0,±1

3
,±1

2
,±1,±2,±3

Status So Far

We have now mostly solved three equations for positive and neg-

ative integers, for the rationals and the reals, as shown by checks

in the table below.
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Z+ Z Q R C H
20x + 23y = 2023 3 3 3 3

x2 + y2 = 100 3 3 3 3

x5 + 2x3 − 8x = 3x4 − 4x2 − 4 3 3 3 ?

Note that by considering rational solutions to the quintic, we

are also able to enumerate integer solutions.

Complex Numbers

Square Root of −1

If x ∈ R, then x2 ≥ 0 The equation x2 = −1 has no solution in

real numbers.

We can invent new numbers, the imaginary numbers, which

solve this equation. We write the roots of x2 = −1 as x = i and

x = −i.
A complex number x is a number of the form a+bi where a, b

are real and i =
√
−1. We say that a = <(x) is the real part of x

and b = =(z) is the imaginary part. The set of complex numbers

is written C.

Are the Complex Numbers a Field?

To determine whether complex numbers form a field, we have to

define addition and multiplication.

To define addition, add the real and imaginary parts separately.
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To define multiplication, use the distributive law

(a + bi)× (c + di) = ac− bd + (ad + bc)i

It is straightforward but tedious to demonstrate that all the

field axioms for C follow from the statements for R. The trickiest

part is the multiplicative inverse, where we have:

(a + bi)−1 =
a− bi
a2 + b2

Square Root of a General Complex Number

Suppose z = a + bi is a complex number. If b = 0 then z is also

real and we know how to calculate its square root. If b 6= 0 then

z has two square roots, of which one has positive real part:

√
a + bi =

√
a +
√
a2 + b2

2
+ sgn(b)

√
−a +

√
a2 + b2

2
i

Here sgn(b) means the sign of b, that is, +1 if b > 0 and −1 if

b < 0. Check this by multiplying out. The square of the right

hand side is:

a +
√
a2 + b2

2
− −a +

√
a2 + b2

2

+ 2sgn(b)

√
a +
√
a2 + b2

2
× −a +

√
a2 + b2

2
i

=
a

2
+
a

2
+ 2sgn(b)

√
b2

4
i

= a + bi
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The second square root of a+ bi is the negative of the expression

above.

Repeated Square Roots

Using this, we can compute square roots of ±i:
√
i =

1 + i√
2

√
−i =

1− i√
2

In total, there are 8 solutions to x8 = 1, namely 1, −1, ±i, the two

square rots of i and the two square roots of −i. We can keep going

to find 16 roots of x16 = 1 and so on. Critically, we do not need

to keep inventing more imaginary numbers every time we need a

square root; one invention of i is sufficient.

Complex Solutions to x2 + y2 = 100

We can find two solutions for y given (almost) any complex number

x, namely:

y = ±
√

100− x2

Exercise: Can you find a number of x for which there is only

one value of y? Are there any values of x ∈ C for which no y ∈ C
exists?
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Quadratic Formula

Suppose a, b, c ∈ C and a 6= 0. Consider the quadratic equation:

ax2 + bx + c = 0

You might already know how to solve this. First multiply each

side by 4a:

4a2x2 + 4abx + 4ac = 0

This we can re-arrange by completing the square:

(2a + b)2 = 4a2x2 + 4abx + b2 = b2 − 4ac

Taking the square root of each side implies the well-known

quadratic formula:

x =
−b±

√
b2 − 4ac

2a

The original quadratic can now be factorised as:

ax2 + bx + c =
(2ax + b−

√
b2 − 4ac)(2ax + b +

√
b2 − 4ac)

4a

In general, the factorisation might not work under the real

numbers R, because the square root might not exist, but it always

works over the complex numbers C.

Polynomial with Given Roots

Let d ∈ Z+ and let λ1, λ2, . . . λd ∈ F where F is some field. It

is easy to find a polynomial for which these are all roots; that
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polynomial is the product:

p(x) = (x− λ1)× (x− λ2)× . . .× (x− λd)

Multiplying according to the distributive law, we can see that

this polynomial is monic, that is, the leading coefficient (the co-

efficient of xd) is 1.

Fundamental Theorem of Algebra

The fundamental theorem of algebra is that any any monic poly-

nomial of degree d with coefficients in C factorises as:

p(x) = (x− λ1)× (x− λ2)× . . .× (x− λd)

for some complex numbers λ1, λ2, . . . λd, not necessarily dis-

tinct. In other words, introducing i =
√
−1 does not only mean

that all quadratic polynomials split into linear factors, but also

cubics, quartics and univariate polynomials of higher degree. We

do not have to keep inventing more imaginary numbers to split

awkward polynomials.

Exercise: Why does the fundamental theorem of algebra fail

over the real numbers?

Quintic Example

We have already considered the polynomial A(x) = x5 − 3x4 +

2x3 + 4x2− 8x+ 4 . We know that x = 1 is a root, implying that

(x−1) is a factor of A(x), and that ±
√

2 are roots, implying that
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x2− 2 is a factor. Dividing through by those two factors gives the

factorisation:

A(x) = (x− 1)(x2 − 2)(x2 − 2x + 2)

We can factorise the last quadratic using the quadratic formula as:

x2 − 2x + 2 = (x− 1− i)(x− 1 + i)

Thus the last two roots of A(x) are revealed as 1± i and now we

have the full set, by the fundamental theorem of algebra.

We notice that three of these roots are real and only one is an

integer, so we have solved the quintic over all the number sets we

were concerned with.

Status So Far

We have solved all three equations for positive and negative in-

tegers, for the rationals, the reals and the complex numbers, as

shown by checks in the table below.

Z+ Z Q R C H
20x + 23y = 2023 3 3 3 3 3

x2 + y2 = 100 3 3 3 3 3

x5 + 2x3 − 8x = 3x4 − 4x2 − 4 3 3 3 3 3

Note that by considering rational solutions to the quintic, we

are also able to enumerate integer solutions.
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Advanced Material

Quaternions

William Rowan Hamilton was an Irish mathematician who in-

vented quaternions in 1843. A general quaternion is of the form:

x = a + bi + cj + dk

where a, b, c, d ∈ R and i, j, k are three quaternion roots of −1

so that i2 = j2 = k2 = −1. Addition of quaternions is performed

component-wise.

Hamilton also declared the triple product:

i× j × k = −1

This is not compatible with the field axioms, specifically the com-

mutativity of multiplication. However, if we relax the requirement

for multiplication to commute, we can obtain a skew field.

Pre-multiplying the triple product by −i , or post-multiplying

by −k, and applying the associative law, gives:

j × k = −i2 × j × k = i; i× j = −i× j × k2 = k

Further calculations in the same vein give the full table for multi-

plying units:

1× 1 = 1 1× i = i 1× j = j 1× k = k

i× 1 = i i2 = −1 i× j = k i× k = −j
j × 1 = j j × i = −k j2 = −1 j × k = i

k × 1 = k k × i = j k × j = −i k2 = −1
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Products of general quaternions are defined by the distributive

law. Quaternions fail many properties of fields, for example in

having infinitely many solutions to x2 = −1. The failure occurs

because of multiplication not being commutative.

The solution of linear equations with real coefficients is easy

with quaternions, but higher order equations are very tricky. Thus

our final progress chart is

Z+ Z Q R C H
20x + 23y = 2023 3 3 3 3 3 3

x2 + y2 = 100 3 3 3 3 3

x5 + 2x3 − 8x = 3x4 − 4x2 − 4 3 3 3 3 3

Finite Fields

Mathematicians who call themselves algebraists work with fields

in general, proving theorems that apply to any field.

For example, you might think all fields have to contain the

positive integers, that is, the sequence 1, 1 + 1, 1 + 1 + 1 etc. But

none of the field axioms imply that the sequence has to go on for

ever without repeating. The sequence could loop back to 0. The

number of steps before this happens is called the characteristic

of the field, and (it turns out) the characteristic always has to be

a prime number.

For example, suppose we have a field of characteristic 3, so that

in this field 0 = 3 and −1 = 2. Suppose also there is an element

i such that i =
√
−1 =

√
2. Then we can compute successive

30



powers of 1 + i:

(1 + i)2 = 1− 1 + 2i = −i
(1 + i)3 = −i(1 + i) = 1− i
(1 + i)4 = (1− i)(1 + i) = 2 = −1

(1 + i)5 = −1− i
(1 + i)6 = i

(1 + i)7 = −1 + i

(1 + i)8 = 1

These are the eight solutions of x8 = 1. It turns out that these

8 elements, together with zero, form a finite field. All the field

axioms can be checked by brute force as there are only finitely

many cases to verify. The field is known as F9. It can be shown

that any field with 9 elements must be isomorphic to this one, that

is, any two fields of 9 elements are the same apart from swapping

the labels of the elements.

There are not finite fields of all sizes; for example there is no

F10.

The field F9 is not algebraically complete; for example the

equation x2 = 1 + i has no solutions in F9.
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Conclusions

Useful techniques to help you solve equations in different number

sets:

Z+ Fundamental Theorem of Arithmetic

Brute force search

Q Rational Root Theorem

Chord Method

R Intermediate Value Theorem

C Quadratic formula

Fundamental Theorem of Algebra
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